General Instructions for IA2 - BaSTI Database Server

This form allows the user to download  ascii files creating using FRANEC code described in Pietrinferni, Cassisi, Salaris & Castelli (2004, ApJ, 612, 168).

Descriptions of individual fields on this form follow:

Filename

This string gives the name of the file contained into the Database, it is unique.

Data type

The available theoretical predictions are:

  • TRACK:
    the evolution of a stellar model followed from the Main-Sequece to the first thermal pulse.
  • TRACK HB:
    the evolution of a stellar model followed from the Zero Age Horizontal Branch (ZAHB) to the first thermal pulse.
  • ISOCHRON:
    the locus of H-R diagram (or CMD) populated by structures with the same age and initial chemical composition but different mass.
  • Tab. ZAHB:
    the locus of H-R diagram (or CMd) populated by structures with the same Helium core mass and chemical composition, but different total mass taken at the ZAHB phase.
  • Tab. End He:
    the locus of H-R diagram (or CMd) populated by structures with the same Helium core mass and chemical composition, but different total mass taken at the end of central Helium burning phase.
  • Summary Tab.:
    table with same important quantities taken at different evolutionary phases.
  • Scenario

  • CANONICAL:
    the models do not include gravitational settling, radiative acceleration, convective overshooting, rotational mixing.
  • OVERSHOOTING:
    the models do not include gravitational settling, radiative acceleration, rotational mixing, but account for core convective overshooting during the H-burning phase. The value adopted for the overshoot from the classical Schwarzschild convective boundary is equal to λOV·Hp where λOV=0.2 and Hp is the local pressure scale.
  • DIFFUSION:
    not yet available.
  • ROTATION:
    not yet available.
  • Age

    It represents the age (in Gyr) of an isochron; the minimum value is 0.03 Gyr, while the maximum value depends from the adopted Mass loss (η) and OvershootingOV) parameters as summarized in the table:

    η λOV Age max
    0.2 0.0 19
    0.2 0.2 9.5
    0.4 0.0 15
    0.4 0.2 9.5

    Mass

    It is the mass (in Solar Unit) of the structure. Its minimum and maximum values depend from the adopted Mass loss (η) and OvershootingOV) parameters as summarized in the table:

    η λOV Mass min Mass max
    0.2 0.0 0.5 2.5
    0.2 0.2 1.1 2.5
    0.4 0.0 0.5 10
    0.4 0.2 1.1 10

    Z

    The mass fraction of the initial heavy elements abundance; the range covered is: 0.0001 ≤ Z ≤ 0.04

    Y

    The mass fraction of the initial helium abundance; the range covered is: 0.245 ≤ Y ≤ 0.303
    Actually, for each Z models have been computed by adopting a unique Y value given by: Y=1.44·(Z-0.0001)

    [Fe/H]

    The iron abundance in the spectroscopic formalism:

    [Fe/H]= log10(Fe/H) - log10(Fesun/Hsun)
    the range covered is: -2.62 ≤ [Fe/H] ≤ 0.40

    [M/H]

    The metal abundance in the spectroscopic formalism:

    [Z/H]= log10(Z/H) - log10(Zsun/Hsun)
    the range covered is: -2.27 ≤ [Fe/H] ≤ 0.40

    Type

  • NORMAL:
    the evolution tracks and isochrones have been followed until the first thermal pulse.
  • AGBEXTENDED:
  • both stellar evolution models and isochrones have been extended along the Asimptotic Giant Branch (AGB) stage to cover the full thermal pulses phase, using the synthetic AGB tecnique (Iben & Truran 1978, ApJ, 220, 980)

    Mass loss

    All models include mass loss according to the Reimers (1975) low:

    dM/dt = -4 · 10-13 η ·(L/gR)         (Msun/yr)
    (where L, g and R are the stellar luminosity, surface gravity and radius respectively) with the free parameter η set to 0.2 and 0.4.

    Photometric system

    All the theoretical predictions has been transferred from the theoretical to different photometric system:

  • ACS: Advanced Camera for Survey - on board of HST - Vega mag (Bedin et al. 2005, MNRAS, 357, 1038)
  • F435W F475W F555W F606W F625W F775W F814W

  • SLOAN: Sloan system (Marconi et al. 2005, MNRAS, 371, 1503)
  • Mg (u-g) (g-r) (r-i) (i-z)

  • JOHNSON CASTELLI: Johnson-Cousins system (Pietrinferni et al. 2004, ApJ, 612, 168)
  • MV (B-V) (U-B) (V-I) (V-R) (V-J) (V-K) (V-L) (H-K)

  • STROEMGREN CASTELLI: Stroemgren system (Pietrinferni et al. 2006, ApJ, 642, 797)
  • My (u-b) (u0-b) (b-y) (m1) (c1) (c1_0) (Hβ) (hk)

  • WALRAVEN : Walraven system
  • MV (V-B) (B-U) (U-W) (B-L) (L-U)
  • WFC2 HST: Wide Field Planetary Camera 2 system - on board of HST
  • F122W F130lp F160W F165lp F170W F185W F218W F255W F300W F336W F380W F439W F450W F555W F606W F622W F675W F702W F791W F814W F850lp

  • WFC3 (UVIS) HST: Wide Field Camera 3 (UVIS) system - on board of HST
  • F218W F225W F275W F336W F390W F438W F475W F555W F606W F625W F775W F814W

    Mixture

    All the theoretical predictions have been computed adopting two different distributions for the heavy elements:

    SCALED SOLAR
    (Grevesse & Noel 1993)
    ALPHA ENHANCED
    (Weiss 1995)
    Element
    number fract.
    Mass fract.
    number fract.
    Mass fract.
    C12
    0.245518
    0.173285
    0.108211
    0.076451
    N14
    0.064578
    0.053152
    0.028462
    0.023450
    O16
    0.512966
    0.482273
    0.714945
    0.672836
    Ne20
    0.083210
    0.098668
    0.071502
    0.084869
    Na23
    0.001479
    0.001999
    0.000652
    0.000882
    Mg24
    0.026308
    0.037573
    0.029125
    0.041639
    Al27
    0.002042
    0.003238
    0.000900
    0.001428
    Si28
    0.024552
    0.040520
    0.021591
    0.035669
    P30
    0.000195
    0.000355
    0.000086
    0.000157
    S 32
    0.011222
    0.021142
    0.010575
    0.019942
    Cl35
    0.000219
    0.000456
    0.000096
    0.000201
    Ar40
    0.002291
    0.005379
    0.001010
    0.002373
    K39
    0.000091
    0.000210
    0.000040
    0.000092
    Ca40
    0.001586
    0.003734
    0.002210
    0.005209
    Ti48
    0.000075
    0.000211
    0.000137
    0.000387
    Cr52
    0.000329
    0.001005
    0.000145
    0.000443
    Mn55
    0.000170
    0.000548
    0.000075
    0.000242
    Fe56
    0.021877
    0.071794
    0.009642
    0.031675
    Ni59
    0.001293
    0.004459
    0.000595
    0.002056

    Code version

    The stellar evolutionary codes adopted in this work are the FRANEC (Frascati Raphson-Newton Evolutionary Code), i.e. the same used by Cassisi & Salaris (1997) and Salris & Cassisi (1998), with various updates:

    Physical inputs
    2003 2007
    Equation of State
    Irwin 2003
    Irwin 2003
    Low-T radiative opacity
    Alexander & Ferguson 1994
    Ferguson et al. 2005
    High-T radiative opacity
    Iglesias & Rogers 1996
    Iglesias & Rogers 1996
    Conductive opacity
    Potekhin 1999
    Potekhin 1999
    Nuclear reaction
    NACRE (Angulo et al. 1999)
    NACRE (Angulo et al. 1999)
    Plasma neutrino
    Haft et al. 1994
    Haft et al. 1994
    Boundary Condition
    Krishna-Swamy 1966
    Krishna-Swamy 1966
    Mixing length
    1.913
    2.013
    Atomic Diffusion
    NO
    NO
    Mass loss
    Reimers 1975
    Reimers 1975

    Rad opacity

    This field indicates the prescription followed to include the low temperature radiative opacity:

  • Alexander & Ferguson 1994 ⇒ Alexander D. R., & Ferguson J. W., 1994, ApJ, 437, 879
  • Ferguson 2005 ⇒ Ferguson et al. 2005, ApJ, 623, 585
  • For any problem please contact: IA2